Semi-supervised multi-label feature selection with local logic information preserved

نویسندگان

چکیده

In reality, like single-label data, multi-label data sets have the problem that only some labels. This is an excellent challenge for feature selection. paper combines logistic regression model with graph regularization and sparse to form a joint framework (SMLFS) semi-supervised First of all, used explore geometry structure feature, obtain better coefficient matrix, which reflects importance feature. Second, label extract available information, constrain so matrix can fit information. Third, $$L_{2,p}$$ -norm $$0<p\le 1$$ constraint ensure sparsity it more convenient distinguish features. addition, iterative updating algorithm convergence designed proved solve above problems. Finally, proposed method validated on eight classic sets, experimental results show effectiveness algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Convex Formulation for Semi-Supervised Multi-Label Feature Selection

Explosive growth of multimedia data has brought challenge of how to efficiently browse, retrieve and organize these data. Under this circumstance, different approaches have been proposed to facilitate multimedia analysis. Several semi-supervised feature selection algorithms have been proposed to exploit both labeled and unlabeled data. However, they are implemented based on graphs, such that th...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Semi-Supervised Feature Selection with Constraint Sets

In machine learning classification and recognition are crucial tasks. Any object is recognized with the help of features associated with it. Among many features only some leads to classify object correctly. Feature selection is useful technique to detect such specific features. Feature selection is a process of selecting subset of features to reduce number of features (dimensionality reduction)...

متن کامل

Forward Semi-supervised Feature Selection

Traditionally, feature selection methods work directly on labeled examples. However, the availability of labeled examples cannot be taken for granted for many real world applications, such as medical diagnosis, forensic science, fraud detection, etc, where labeled examples are hard to find. This practical problem calls the need for “semi-supervised feature selection” to choose the optimal set o...

متن کامل

Mutual Information-based multi-label feature selection using interaction information

Multi-label feature selection is regarded as one of the most promising techniques that can be used to maximize the efficacy and efficiency of multi-label classification. However, because multi-label feature selection algorithms must consider multiple labels concurrently, the task is more difficult than singlelabel feature selection tasks. In this paper, we propose the Mutual Information-based m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Computational Intelligence

سال: 2021

ISSN: ['2730-7808', '2730-7794']

DOI: https://doi.org/10.1007/s43674-021-00008-6